钙钛矿型太阳能电池(perovskite solar cells),是一种新型薄膜太阳能电池,它利用钙钛矿型的有机金属卤化物半导体作为吸光材料。
此前,高效率的钙钛矿电池一直依赖高温(~500oC)制备的介孔电子传输层,但高温工艺制备较复杂且无法用于需要低温制备条件的柔性器件和叠层器件。可全低温溶液法制备的平面型钙钛矿太阳能电池具有制备工艺简单、能耗小、成本低、用途广等优点,备受研究者关注。然而与高温介孔器件相比,受限于电荷传输层与钙钛矿界面缺陷态密度高、界面结合力较弱,导致低
温平面钙钛矿电池效率较低、工作稳定性较差。鉴于此研究背景,谭海仁博士提出了界面氯原子接触钝化原理和技术。通过选择反应源与反应溶剂,在低温条件下制备表面包覆氯原子配体的TiO2纳米晶,并利用极性合适的共混溶剂体系,促使纳米晶在加工溶剂中高度分散并保留表面氯原子配体。理论计算结果表明,界面氯原子能有效地抑制TiO2/钙钛矿界面的深能级缺陷生成,并显著提高电荷传输层与钙钛矿层界面结合力。基于界面氯原子接触钝化技术,我们成功制备了高效稳定的基于全低温工艺的平面型钙钛矿太阳能电池(Science 2017, 355, 722-726)。经权威第三方认证机构(Newport Corporation)认证的转换效率(小面积器件20.1%、大面积器件19.5%)为此前报道的平面型钙钛矿电池的世界最高值。该技术具有工艺简单、可全低温溶液法制备、器件在工作条件下稳定性好等优势,为实现印刷制备柔性器件及构筑高效叠层电池提供了技术支持。
一、课题组相关成果:
P. Zhuǂ, S. Guǂ, X. Luo, Y. Gao, S. Li, J. Zhu, and H. Tan*. "Simultaneous Contact and Grain‐Boundary Passivation in Planar Perovskite Solar Cells Using SnO2‐KCl Composite Electron Transport Layer". Advanced Energy Materials 10, 1903083 (2019).
H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. De Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z. H. Lu, Z. Yang, S. Hoogland, and E. H. Sargent*. ''Efficient and stable solution-processed planar perovskite solar cells via contact passivation''. Science 355, 722–726 (2017).
Y. Rongǂ, Y. Huǂ, A. Meiǂ, H. Tan, M. I. Saidaminov, S. Il Seok*, M. D. McGehee*, E. H. Sargent*, and H. Han*. "Challenges for commercializing perovskite solar cells". Science 361, 6408 (2018).
F. Tan, H. Tan*, M. I. Saidaminov, M. Wei, M. Liu, A. Mei, P. Li, B. Zhang, C.-S. Tan, X. Gong, Y. Zhao, A. R. Kirmani, Z. Huang, J. Z. Fan, R. Quintero-Bermudez, J. Kim, Y. Zhao, O. Voznyy, Y. Gao, F. Zhang, L. J. Richter, Z.-H. Lu, W. Zhang*, and E. H. Sargent*. "In Situ Back‐Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells". Advanced Materials 31, 1807435 (2019)
H. Tanǂ*, F. Cheǂ, M. Weiǂ, Y. Zhao, M. Saidaminov, P. Todorović, D. Broberg, G. Walters, F. Tan, T. Zhuang, B. Sun, Z. Liang, H. Yuan, E. Fron, J. Kim, Z. Yang, O. Voznyy, M. Asta, and E. H. Sargent*.''Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites''. Nature Communications 9, 3100 (2018).
二、课题组最新进展介绍:
1.一步法及两步法的高效单结电池
课题组在界面钝化技术制备高效钙钛矿太阳能电池方向取得新进展,相关成果以“Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer ”为题于12月05日在线发表于《Advanced Energy Materials》(https://doi.org/10.1002/aenm.201903083)。
钙钛矿太阳能电池,是利用有机无机杂化金属卤化物钙钛矿材料作为吸光层的新型太阳能电池,具有低成本,易制备,高性能等显著优势,是目前国际上研究的热点。钙钛矿电池的光电转化效率发展迅速,由2009年的3.8% 提升到2019年的25.2%,在光伏领域具有极大的竞争潜能。尽管效率已超过25%,但相较于其理论极限(S-Q 极限),钙钛矿电池依然有一定的差距,尤其是在开路电压方面。效率的损耗与钙钛矿电池中存在的缺陷密切相关,这些缺陷增加了非辐射复合的占比,降低了载流子的利用率。经研究表明,电池中的缺陷多集中在钙钛矿材料的晶界以及与传输层材料的接触界面上。因此,合理地利用钝化技术减少缺陷有利于电池性能的进一步提升。
在n-i-p结构的钙钛矿电池中,现有工作多集中于钝化钙钛矿层与空穴传输层接触的顶界面,因为旋涂空穴传输层的所选溶剂与钝化层相匹配,破坏较小可行性高。相对地,由于钙钛矿所采用的极性溶剂与钝化层的不匹配性,底层界面(即钙钛矿层与电子传输层的界面)的钝化技术相关研究较少。
针对这一问题,谭海仁课题组借鉴了前期相关工作基础(DOI: 10.1126/science.aai9081),将稳定的无机物氯化钾加入到电子传输层二氧化锡纳米晶中。留于电子传输层表面的钾离子和氯离子可以钝化该界面,减小缺陷态导致的非辐射复合,提高载流子的抽取能力。同时,存于电子传输层表面的钾离子在上层钙钛矿薄膜的旋涂与退火的过程中,能够部分地扩散至钙钛矿膜层中,并聚集于钙钛矿晶界处。此处的钾离子可以显著降低缺陷密度,提升辐射复合的比例。由于非辐射复合的抑制以及更高效的载流子抽取能力,该策略将电池的开路电压由最初的1.077V 提升到1.137V,电池效率从20.2% 提升到22.2% (如图一所示)。
图1,(a)钙钛矿电池结构及钝化策略示意图;(b)钝化与未钝化电池的电流-电压曲线对比。